

1 **Comparative Clinical Evaluation of 3.0T MRS with Phased-Array or Endorectal Coils in**
2 **Prostate Cancer Patients.**

3 Running title: Endorectal coil for 3.0T MRS.

4

5 Yukihiro Hama, M.D.* **, Ph.D., Etsuko Tate, M.D., Ph.D.*

6 *Department of Radiation Oncology, Tokyo-Edogawa Cancer Centre, Edogawa Hospital.

7 **Department of Radiation Oncology, Kawaguchi Municipal Medical Center.

8

9 Corresponding author: Yukihiro Hama, M.D., Ph.D.

10 Department of Radiation Oncology, Tokyo-Edogawa Cancer Centre, Edogawa Hospital.

11 2-24-18 Higashikoiwa, Edogawa, Tokyo, 133-0052, Japan

12 Telephone: +81-3-3673-1221

13 Email address: yjhama2005@yahoo.co.jp

14

1 **Abstract**

2 **Background:** There are no magnetic resonance spectroscopy (MRS) data comparing endorectal
3 coils and phased-array coils in prostate cancer patients on a 3.0T MRI system at the same position
4 using the same sequence parameter.

5 **Objectives:** The purpose of this study was to semiquantitatively compare MRS in biopsy-proven
6 prostate cancer patients with phased-array or endorectal coils.

7 **Materials and Methods:** Five patients with low-risk prostate cancer underwent MRS with
8 endorectal coils and phased-array coils using a combination of point-resolved spectroscopy
9 (PRESS) volume localization and 3D chemical shift imaging (CSI). Signal intensity lines between 0
10 ppm and 10 ppm (L0) and positive portion between 1.5 ppm and 2.4 ppm and 3.5 ppm and 4.0 ppm
11 (L), water peak height (H0), citrate peak height (h), H0/L0 and h/L, and the full width at half
12 maximum (FWHM) of the water peak were measured and compared between the two coils.

13 **Results**

14 Both L0 and L were either marginally or statistically significantly shorter for the endorectal coils
15 than for the phased-array coils (L0: $p = 0.063$, L: $p < 0.05$). The H0 / L0 of the endorectal coils was
16 also significantly higher ($p < 0.05$), and the H / L was slightly higher than that of the phased array
17 coils ($p = 0.344$). The mean FWHM of the water peak with the endorectal coil was shorter than that
18 with the phased-array coil ($p < 0.05$).

19 **Conclusion:** Endorectal coils provided higher SNR on a 3.0T MRI system than phased-array coils
20 in prostate cancer patients.

21

22 **Key words**

23 Proton Magnetic Resonance Spectroscopy, Prostatic Neoplasm, Magnetic Resonance Imaging

1 **Introduction**

2 Magnetic resonance spectroscopy (MRS) has emerged as a powerful tool in the field of medical
3 imaging, offering non-invasive insights into metabolic changes within tissues [1-3]. In prostate
4 cancer, MRS improves diagnostic accuracy, detects metabolic alterations, and helps characterize
5 and monitor treatment responses. The ability to evaluate tumors non-invasively makes MRS an
6 attractive option for patients and clinicians alike. Despite these benefits, there remain several
7 limitations and challenges in MRS application. For instance, while the use of an endorectal coil
8 enhances the signal-to-noise ratio (SNR) and spatial resolution, its effectiveness in a 3.0T MRI
9 system has not been thoroughly evaluated in clinical cases by comparing it with and without the
10 endorectal coil [4]. Previous studies have shown mixed results, with some indicating improved
11 image quality and diagnostic performance with endorectal coil, while others highlight potential
12 drawbacks such as increased artifacts and patient discomfort [5,6]. Furthermore, the integration of
13 endorectal coil in clinical practice often faces resistance due to these drawbacks and the added
14 complexity. Moreover, there is a pressing need for more robust comparative studies that can provide
15 definitive evidence regarding the benefits and limitations of using endorectal coils in 3.0T MRI
16 systems. This gap in the literature underlines the importance of our study, which aims to
17 semiquantitatively compare MRS in biopsy-proven prostate cancer patients with and without the
18 use of endorectal coils. By addressing these issues, our research seeks to clarify the actual clinical
19 value of endorectal coils and potentially influence future guidelines and practices in prostate cancer
20 imaging. The purpose of this study was to semiquantitatively compare MRS in biopsy-proven
21 prostate cancer patients using phased-array body coils and endorectal coils.

22

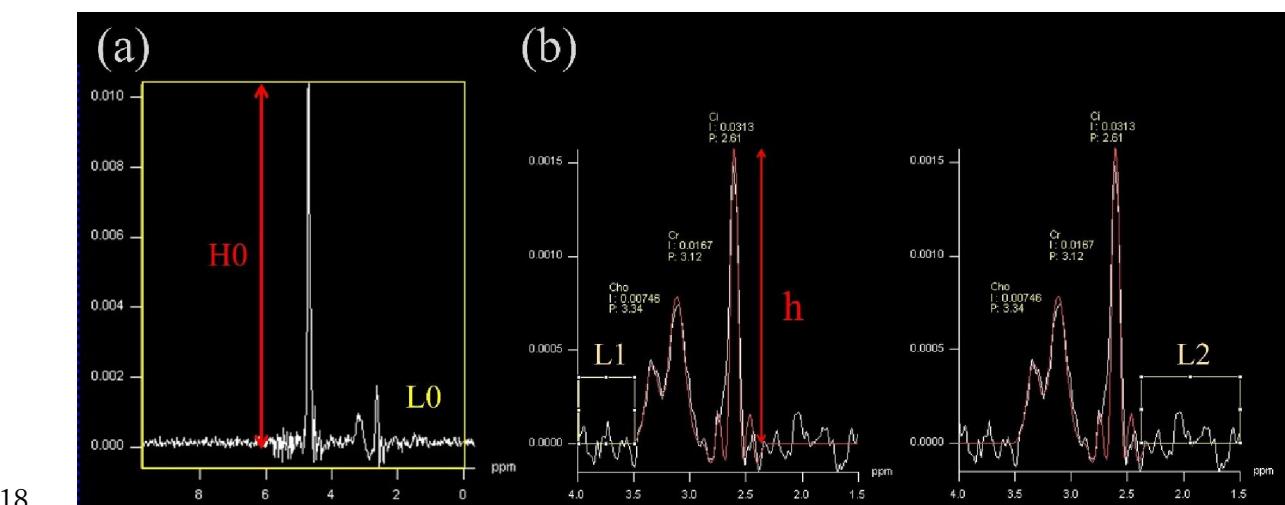
23 **Methods**

24 *Patient*

25 The study included five patients with biopsy-confirmed, low-risk prostate cancer (cT1c-T2a N0 M0,
26 Gleason score 3+3, serum prostate-specific antigen level: 4.5-9.1 ng/mL). Since this is a feasibility
27 study, only 5 patients were enrolled in the study. All patients underwent systemic biopsy of the
28 prostate and at least 14 specimens were obtained. Patients receiving hormone therapy, radiation
29 therapy, or high-intensity focused ultrasound were excluded. This MRI protocol was approved by
30 the institutional review board of TECC (Ref. RO001132), and all procedures were conducted in
31 accordance with the 2013 revision of the Declaration of Helsinki. The patient signed informed
32 consent for the use of the collected MRI data for publication. The patient signed informed consent
33 for the publication of their data.

34 *MRI protocol*

35 Although 3.0T MRI systems generally have a higher SNR than 1.5T MRI systems for prostate
36 MRS, the need for endorectal coils is not well understood and has never been compared and
37 evaluated in the same patient. MRI was performed with both 18-channel phased-array body coil and
38 endorectal coil (Medrad eCoil, Bayer HealthCare, Whippny, NJ, USA) using a commercial 3.0T


1 MRI system (MAGNETOM Skyra, Siemens, Munich, Germany). After T2-weighted 2D fast spin
2 echo imaging (repetition time [TR] 3050 ms, echo time [TE] 84 ms, flip angle [FA] 133, slice
3 thickness 3 mm, field of view [FOV] 200 mm x 200 mm) and diffusion-weighted imaging (b-
4 values: 0, 1000 s/mm²), MRS was performed. The matrix size in CSI MRS was 64 x 64 x 16. The
5 endorectal coil was left in place and the MRS from the endorectal coil and that from the phased-
6 array body coil were acquired with the same sequence parameters.

7 *MRS*

8 MRS of the prostate was performed using a combination of point-resolved spectroscopy (PRESS)
9 volume localization and 3D chemical shift imaging (CSI). The PRESS volume was set to
10 encompass the entire prostate while avoiding the coil interface and the influence of surrounding
11 tissue such as seminal vesicles and fat. Outer volume saturation bands (20-30mm thick) were placed
12 to shape the volume of interest (VOI) to better conform to the shape of the prostate and eliminate
13 unwanted extra-prostatic tissue signal. The CSI MRS parameters were as follows: TR 750 ms, TE
14 145 ms, voxel size 4 x 4 x 4 mm, number of averages 4.

15 *Measured data*

16 The length of the signal intensity line between 0 ppm and 10 ppm (L0) and the height (H0) of the
17 water peak (4.7 ppm) were measured using an endorectal coil or a phased-array coil (**Figure 1a**).

19 **Figure 1.** Magnetic resonance spectroscopy data acquisition and analysis.

20 (a) Water peak and noise between 0 ppm and 10 ppm. The length of the signal intensity line between
21 0 ppm and 10 ppm (L0) and the height (H0) of the water peak (4.7 ppm) were measured using an
22 endorectal coil or a phased-array coil. (b) Citrate peak and noise between 1.5 ppm and 4.0 ppm. The
23 total length (L) of the positive values of the signal intensity lines from 1.5 ppm to 2.4 ppm (L1) and
24 3.5 ppm to 4.0 ppm (L2) and the height (h) of the citrate peak (2.6 ppm) were measured using an
25 endorectal coil and a phased-array coil.

26

27 The total length (L) of the positive values of the signal intensity lines from 1.5 ppm to 2.4 ppm (L1)
28 and 3.5 ppm to 4.0 ppm (L2) and the height (h) of the citrate peak (2.6 ppm) were measured using

1 an endorectal coil and a phased-array coil (**Figure 1b**). The voxel location was set at a position
2 where no cancer was found on biopsy and where the citrate peak was higher than the choline peak.
3 The dynamic range of the intensity was set to the maximum and minimum values of the signal
4 intensity line. L_0 , H_0 , H_0/L_0 , L ($=L_1 + L_2$), h and h/L were compared between the endorectal coil
5 and the phased-array body coil. We also calculated the full width at half maximum (FWHM) of the
6 water peak and compared it between the endorectal coil and the phased-array body coil.

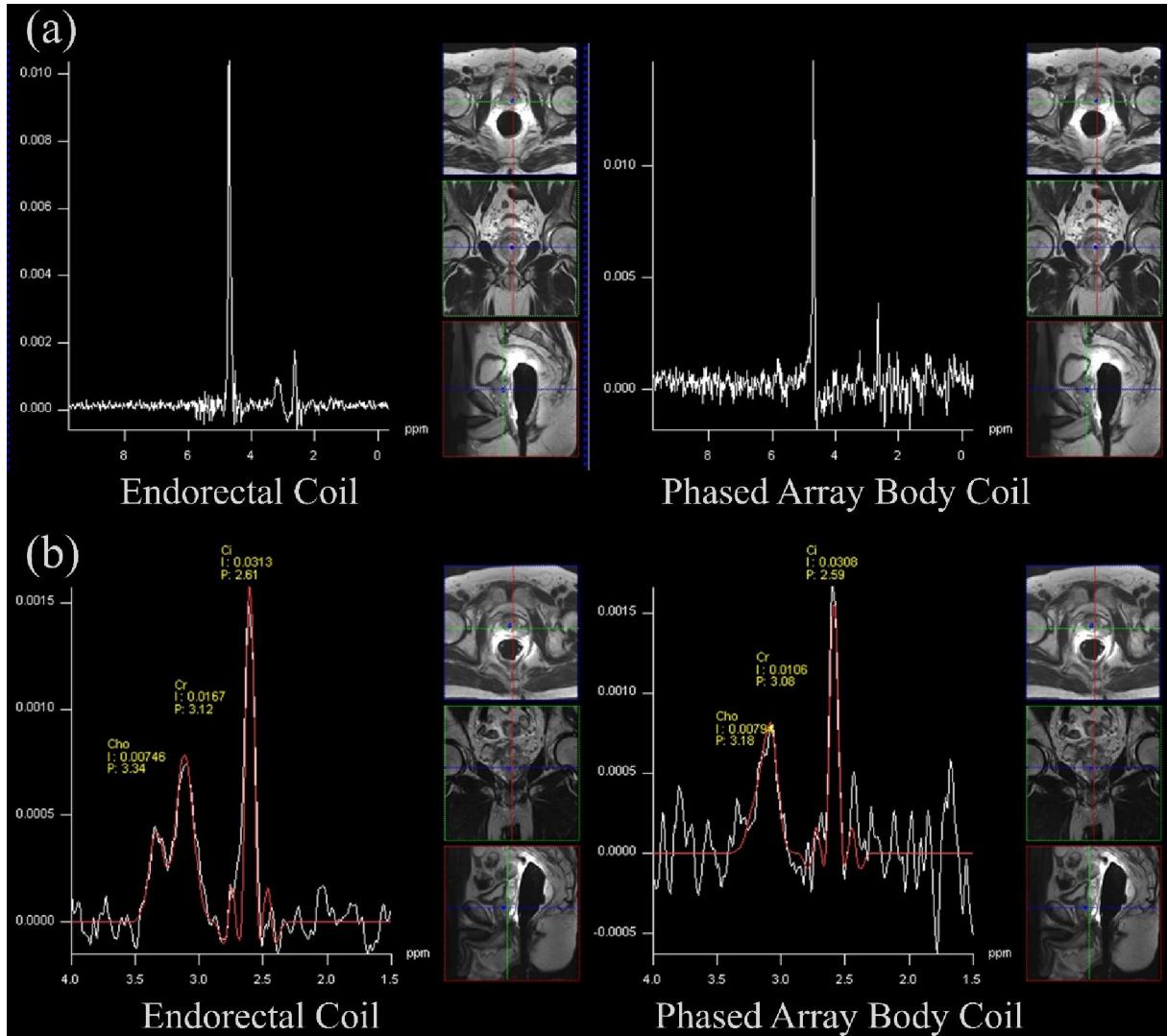
7 *Statistical analysis*

8 All data are expressed as mean +/- standard deviation (SD) and 95% confidence interval (CI). The
9 length of the signal intensity line, the height of the water or citrate peak, the ratio of peak height to
10 signal intensity line length, and the FWHM of the water peak were compared between the two
11 groups. Statistical analysis was performed between the two groups using the Wilcoxon signed-rank
12 test, and a p-value of less than 0.05 was considered statistically significant.

13

14 **Results**

15 Summarized results of the comparison of endorectal and phased-array body coils are shown in


16 **Table 1**.

1 **Table 1.** Comparison of Endorectal and Phased-Array Body Coils.

Parameter	Endorectal Coil	Phased-Array Body Coil	p-value
L0 (Signal intensity line length 0-10 ppm)	1391.2 ± 473.1 (95% CI: 976.5-1864.3)	4171.8 ± 1722.1 (95% CI: 2662.3-5893.9)	0.063
H0 (Water peak height)	13.1 ± 6.6 (95% CI: 7.3-19.7)	13.9 ± 5.1 (95% CI: 9.4-19.0)	0.125
H0 / L0	$9.42 \times 10^{-3} \pm 3.75 \times 10^{-3}$ (95% CI: 6.1-13.2 $\times 10^{-3}$)	$3.90 \times 10^{-3} \pm 2.27 \times 10^{-3}$ (95% CI: 1.9-6.2 $\times 10^{-3}$)	< 0.05
L (Total signal intensity line length 1.5-2.4 ppm & 3.5-4.0 ppm)	1105.2 ± 283.7 (95% CI: 856.6-1388.9)	2550 ± 1058.0 (95% CI: 1622.6-3608.0)	< 0.05
h (Citrate peak height)	233.4 ± 75.1 (95% CI: 167.6-308.5)	257.4 ± 40.0 (95% CI: 222.3-297.4)	0.313
h / L	0.229 ± 0.0941 (95% CI: 0.146-0.323)	0.125 ± 0.084 (95% CI: 0.051-0.209)	0.344
FWHM of water peak	0.075 ± 0.016 (95% CI: 0.061-0.090) ppm	0.117 ± 0.058 (95% CI: 0.066-0.168) ppm	< 0.05

2 FWHM: full width at half maximum.

1 The length of the signal intensity line between 0 ppm and 10 ppm (L0) was 1391.2 ± 473.1 (95%
 2 CI 976.5-1864.3) for the endorectal coil and 4171.8 ± 1722.1 (95% CI 2662.3-5893.9) for the
 3 phased-array body coil ($p = 0.063$) (**Figure 2a**).

5 **Figure 2.** Signal intensity lines of the endorectal coil and the phased-array coil in the same patient
 6 at the same position using the same sequence parameter.

7 **(a)** Between 0 ppm and 10 ppm, the baseline of signal intensity was less disturbed in the endorectal
 8 coil than in the phased-array coil, and the length of the line was shorter. **(b)** Between 1.5 ppm and
 9 4.0 ppm, the positive part of the baseline between 1.5 ppm and 2.4 ppm and 3.5 ppm and 4.0 ppm
 10 was less disturbed in the endorectal coil than in the phased-array coil, and the line length was
 11 shorter.

12 The height (H_0) of the water peak (4.7 ppm) was 13.1 ± 6.6 (95% CI 7.3-19.7) for the endorectal
 13 coil and 13.9 ± 5.1 (95% CI 9.4-19.0) for the phased-array body coil ($p = 0.125$). H_0 / L_0 was $9.42 \times 10^{-3} \pm 3.75 \times 10^{-3}$ (95% CI 6.1-13.2 $\times 10^{-3}$) for the endorectal coil and $3.90 \times 10^{-3} \pm 2.27 \times 10^{-3}$
 15 (95% CI 1.9-6.2 $\times 10^{-3}$) for the phased-array body coil ($p < 0.05$).

16 The total length (L) of the signal intensity lines between 1.5 ppm and 2.4 ppm (L_1) and

1 between 3.5 ppm and 4.0 ppm (L2) was 1105.2 +/- 283.7 (95% CI 856.6-1388.9) for the endorectal
2 coil and 2550 +/- 1058.0 (95% CI 1622.6-3608.0) for the phased-array body coil ($p < 0.05$) (**Figure**
3 **2b**). The height of the citrate peak (2.6 ppm) (h) was 233.4 +/- 75.1 (95% CI 167.6-308.5) for the
4 endorectal coil and 257.4 +/- 40.0 (95% CI 222.3-297.4) for the phased-array body coil ($p = 0.313$).
5 H / L was 0.229 +/- 0.0941 (95% CI 0.146-0.323) for the endorectal coil and 0.125 +/- 0.084 (95%
6 CI 0.051-0.209) for the phased-array body coil ($p = 0.344$). The mean FWHM of the water peak
7 with the endorectal coil was 0.075 +/- 0.016 (95% CI 0.061-0.090) ppm, while that with the phased
8 array coil was 0.117 +/- 0.058 ppm (95% CI 0.066-0.168 ppm) ($p < 0.05$).
9

10 **Discussion**

11 This feasibility study compared prostate MRS using endorectal and phased-array coils in five
12 patients with low-risk prostate cancer. The primary finding was a statistically significant difference
13 in the ratio of water peak height to total signal intensity line length (H0/L0), with the endorectal coil
14 showing a higher ratio. This suggests a potentially different signal profile between the two coil
15 types. In addition, the total length of signal intensity lines in certain chemical shift regions (L) was
16 significantly greater with the phased-array coil. Critically, the endorectal coil yielded a significantly
17 smaller FWHM of the water peak, indicating superior spectral resolution. While differences were
18 observed in other measured parameters (L0, H0, citrate peak height (h), and h/L), these did not
19 reach statistical significance. In essence, the study suggests that the endorectal coil provides
20 improved spectral resolution, potentially allowing for more accurate metabolite quantification than
21 phased-array body coils. However, the small sample size ($n=5$) requires cautious interpretation and
22 highlights the need for larger studies to validate these preliminary findings.

23 To our knowledge, this is the first report of a semiquantitative comparison of MRS
24 performed in the same patient using endorectal and phased-array body coils with the same sequence
25 parameters. It has been reported that magnetic field strength and coils had a significant effect on
26 SNR in a phantom study, but SNR was evaluated by (choline + creatine)/citrate ratio, which could
27 not evaluate out-of-peak noise [4]. On the other hand, this study not only evaluated the specific
28 peaks of citrate and water, but also compared the applicability of endorectal and phased-array body
29 coils in MRS in a semiquantitative manner by measuring the noise outside the specific peaks. To
30 evaluate the SNR between 1.5 ppm and 4.0 ppm, only positive values of the signal intensity line
31 were evaluated because the post-processing software automatically adjusts the citrate peak to
32 positive values.

33 This study has several strengths. First, The SNRs of the endorectal and phased-array coils
34 were compared over a wide range of 0-10 ppm, including the water peak. Since the water peak is
35 much higher than the citrate and choline peaks, we believe that using the water peak as a reference
36 peak will more accurately quantify the out-of-peak noise. Second, there are no clinical data
37 comparing endorectal coils and phased array coils in prostate cancer patients on a 3.0T MRI system
38 [4,7]. The results of this study will provide important insight into the use of endorectal coils for

1 MRS in a 3.0T MRI system.

2 There are several limitations to the study. First, the number of patients in the study is only
3 five. The benefit of endorectal coils has already been demonstrated at 1.5T field strength [8], and if
4 the same proof of principle is demonstrated at 3.0T, there is no need to increase the number of
5 patients. Second, this is a semiquantitative, not quantitative, comparison of endorectal and phased-
6 array coils in terms of SNR for MRS on a 3.0T MRI system. At present, there is no established
7 standard method for quantitative evaluation of SNR in MRS. Further studies are needed to
8 demonstrate the benefit of endorectal coils in prostate MRS on 3.0T systems.

9 Endorectal coils in prostate MRS offer superior peak resolution due to increased SNR,
10 which may lead to improved cancer detection. However, they also have drawbacks. Patient
11 discomfort during insertion and inflation is a primary concern, potentially causing anxiety and
12 motion artifacts. The procedure requires additional technologist time and increases costs. Therefore,
13 the decision to use an endorectal coil should be individualized. In patients with high suspicion for
14 prostate cancer or those on active surveillance, the benefits of using endorectal coils may outweigh
15 the disadvantages. Patient tolerance is critical; alternative strategies should be considered for those
16 who are uncomfortable with the procedure. The availability of advanced external coil technology,
17 which may provide comparable image quality, also influences the decision. While research into
18 improved external coils and imaging techniques continues, endorectal coils remain a valuable tool
19 when used judiciously and tailored to the specific needs and circumstances of the patient.
20 Ultimately, the choice should be made in consultation with the healthcare provider, taking into
21 account the clinical indication, patient preference and available resources.

22 **Conclusions**

23 In conclusion, MRS using a 3.0T MRI system has shown semiquantitatively that the endorectal coil
24 provides a higher SNR than the phased-array coil in prostate cancer patients. Further studies are
25 needed to evaluate the benefits of endorectal coils in prostate MRS at 3.0T, specifically assessing
26 improvements in image quality (SNR, artifact reduction), metabolite quantification accuracy, and
27 small tumor detection, while also considering patient tolerance and cost-effectiveness compared to
28 standard phased-array coil techniques.

1 **References**

2 1. Sharma U, Jagannathan NR. Metabolism of prostate cancer by magnetic resonance spectroscopy
3 (MRS). *Biophys Rev.* 2020;12(5):1163-1173. doi: 10.1007/s12551-020-00758-6.

4 2. Gholizadeh N, Pundavela J, Nagarajan R, Dona A, Quadrelli S, Biswas T, et al. Nuclear magnetic
5 resonance spectroscopy of human body fluids and in vivo magnetic resonance spectroscopy:
6 Potential role in the diagnosis and management of prostate cancer. *Urol Oncol.* 2020;38(4):150-173.
7 doi: 10.1016/j.urolonc.2019.10.019.

8 3. Ko CC, Yeh LR, Kuo YT, Chen JH. Imaging biomarkers for evaluating tumor response: RECIST
9 and beyond. *Biomark Res.* 2021;9(1):52. doi: 10.1186/s40364-021-00306-8.

10 4. Ma C, Chen L, Scheenen TW, Lu J, Wang J. Three-dimensional proton magnetic resonance
11 spectroscopic imaging with and without an endorectal coil: a prostate phantom study. *Acta Radiol.*
12 2015;56(11):1342-9. doi: 10.1177/0284185114556704.

13 5. MagGawlitza J, Reiss-Zimmermann M, Thörmer G, Schaudinn A, Linder N, Garnov N, Horn
14 LC, Minh DH, Ganzer R, Stolzenburg JU, Kahn T, Moche M, Busse H. Impact of the use of an
15 endorectal coil for 3 T prostate MRI on image quality and cancer detection rate. *Sci Rep.* 2017 Feb
16 1;7:40640. doi: 10.1038/srep40640. PMID: 28145525; PMCID: PMC5286427.

17 6. Lee G, Oto A, Giurcanu M. Prostate MRI: Is Endorectal Coil Necessary?-A Review. *Life (Basel).*
18 2022 Apr 11;12(4):569. doi: 10.3390/life12040569. PMID: 35455060; PMCID: PMC9030903.

19 7. Deal M, Bardet F, Walker PM, de la Vega MF, Cochet A, Cormier L, et al. Three-dimensional
20 nuclear magnetic resonance spectroscopy: a complementary tool to multiparametric magnetic
21 resonance imaging in the identification of aggressive prostate cancer at 3.0T. *Quant Imaging Med
22 Surg.* 2021;11(8):3749-3766. doi: 10.21037/qims-21-331.

23 8. Hoffner MK, Huebner F, Scholtz JE, Zangos S, Schulz B, Luboldt W, et al. Impact of an
24 endorectal coil for 1H-magnetic resonance spectroscopy of the prostate at 3.0T in comparison to
25 1.5T: Do we need an endorectal coil? *Eur J Radiol.* 2016;85(8):1432-1438.